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Fourier series with respect to wavelet orthonormal bases in L,([0, 1]”) for a wide
class of multiresolution analyses are studied. Convergence at Lebesgue and strong
Lebesgue points is investigated and sufficient conditions for a.e. convergence are found.
In addition, similar conditions for a.e. convergence of wavelet expansions of non-periodic
functions are obtained. The latter essentially improve known results.  © 1998 Academic Press

1. INTRODUCTION AND DEFINITIONS

A periodized wavelet basis of multiresolution analysis with sufficiently
fast decaying mother- and father-wavelets is an orthonormal basis in L,([ 0, 1]).
Fourier series with respect to this basis (we call them wavelet Fourier series)
have a remarkable property: uniform convergence of wavelet Fourier series
of fto f for each continuous f (see, e.g., [ 1, Chap. 9]). It is of interest also
to investigate the convergence of wavelet Fourier series of summable periodic
functions at an individual point and almost everywhere. These problems
were studied earlier for some special cases. The convergence of Fourier—Haar
series at each Lebesgue point is well known (see, e.g., [2]). It is proved in [ 3]
that 2/th partial sums of Fourier series with respect to periodic spline wavelets
converge art each Lebesgue point. We consider a similar problem for a
wide class of wavelets in the multi-dimensional case. We will investigate the
behavior of wavelet Fourier series of fe L([ 0, 1 ]™) at points of two types:
Lebesgue and so-called strong Lebesgue points (the latter were introduced
by E. S. Belinskii [4]). One says that x is a Lebesgue point of f if

1
lim — |f(x+1)— f(x)| dt=0.
h—> +0 h [—h, k™
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One says that x is a strong Lebesgue point of f if

. 1 &
lim %hmjihld[]’“fihmdlm |f(X+t)—f(x)|=03

hys by —0 Ny -

1 I -
sup ——— drl.--jhdzm|f(x+z)—f(x)|<oo.

Dyy s By #0 By By, ),

It is well known that almost all points are Lebesgue points of f'e L([ 0, 1]™).
It follows from results of S. Saks [6] that almost all points are strong
Lebesgue points of f'e L log L([ 0, 1]™), a fortiori of f' € L,,, p > 1. We consider
an m-dimensional multiresolution analysis which is the tensor product of
m given one-dimensional multiresolution analyses with father-wavelet ¢
and mother-wavelets . In order to construct an orthonormal system in
L,([0,1]™), generated by this analysis, it is necessary to impose some
restrictions on ¢ and . Without any other assumptions we prove that the
wavelet Fourier series of f'e L([0, 1]™) converges at each strong Lebesgue
point. Moreover, a close to best possible sufficient condition on ¢ and
for convergence at each Lebesgue point is found. This condition implies
almost everywhere convergence for all fe L([0, 1]™. For m=2 we have
a sharper condition under which almost everywhere convergence holds for
all feL([0,1]?).

S. Kelly, M. Kon, and L. Raphael [3] investigated a similar problem
for the non-periodic case. They showed that wavelet expansions converge
almost everywhere for all fe L,(R™), 1< p< oo, whenever mother- and
father-wavelets of m-dimensional multiresolution analysis are bounded by
a radial decreasing L; function. We improve this result for the cases when
p>1or m=2, 1<p<oo. Our technique for periodic and non-periodic
cases is similar to that of [3]: study bounds on summation kernels. We
use two types of the above estimations for kernels: via a radial majorant
of m-dimensional mother- and father-wavelets (this estimation was
proved and used in [3]) and via a majorant of mother- and father-wavelets
of one-dimensional multiresolution analysis generating m-dimensional
wavelets.

Let us use the notations T”=[ —3, 31" E= {1, ..,m}; § ={e < E, e # E};
g:e(x) = ge((ps lp! x) = Hlee (p(xl) HleE\e lp(xl)a X = (xh o0y xm) € ers e CE’
J(x)=[gm f(u) e=>™* du, the Fourier transform of f € L(R™); 3  zm f1.€”™ %,
the trigonometric Fourier series of f'e L(T™).

Let ¢ and  be respectively the father- and mother-wavelets of one-dimen-
sional multiresolution analysis
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We define spaces V; by

Vo=V, ® --- ® Vy=span {F(x),xeRm, F(x)= n Si(x)), fre Vo},
=1
FeV,<FQ277.)eV,, jelL.

It is not difficult to show (see, e.g., [1, Chap. 10]) that the ladder of
spaces V;, je Z, forms a multiresolution analysis in L,(R™), the functions

@, ,(x)=2""gF(2/x —n),ne Z™, xeR™, constitute an orthonormal basis
in V,, and the functions ¥¢ (x)=2""g%2/x—n),neZ™ xcR", ecé

constitute an orthonormal basis in the complement spaces W;=V, © V,_,.
Let us assume that

lp(O, [ ()] < v([2]), (1)

where v is a monotone decreasing function which is summable on [0, o0).
Define 1-periodic in each variable functions T}f,(x) =2 jezn Pp(x—1),
T5(x)=%1czn ¥5(x—1). As for the one-dimensional case (see, e.g.,

[1, Chap. 9]), it is not difficult to verify that the spaces

V2 =span{T. neZ™n[0,2))"}, j=0,1,.,

jn?

form a ladder of multiresolution spaces in L,([0, 1]™) such that (J;Z, V7
=L,([0, 1]™), and the spaces

Wi =span{T},neZ"n[0,2/)", ecé}, j=0,1,..,

are orthogonal complements of V7" in V#¢,. Thus, the functions 7§, T°5,,
ecé, j=1,2,..,neZ™n[0,27)" constitute an orthogonal wavelet basis
in L,([0, 1])™). Let (f, T,) =§[0, 1y f(x) T5,(x) dx be Fourier coefficients
with respect to this basis. For each positive integer j and the set @ = { Q¢ Q° <

[0, 2/)"} ., We define partial sums

Jj—1

Sial)=(/.Tg) Too+ X X )3 (. T5) T,

eeé i=0 neZ™nN[0,2/)y"

+2 X (LT T5.

eeé neZmn Q¢

We will say that a wavelet Fourier series converges if S;o (/) converges,
as j— oo, uniformly over all sequences {2} .
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2. MAIN RESULTS

THEOREM 1. If @ and \y are continuous functions satisfying (1), then the
wavelet Fourier series of fe L([0,1]™) converges to [ at each strong
Lebesgue point of f. In particular, for feLlog L([0,1])™) convergence
holds almost everywhere.

THEOREM 2. If there exists a function v which is decreasing on [0, o0 ]
and satisfies

J P (p) dp < o0, (2)

and if @ and \ are continuous functions satisfying (1), then the wavelet
Fourier series of fe L([0, 1]™) converges to f at each Lebesgue point of f.
In particular, convergence holds almost everywhere.

The condition on the functions ¢, ¥ in this theorem is close to sharp due
to the following:

Remark. Relations (1), (2) in Theorem 2 cannot be replaced by |¢()],
l(0) <27

THEOREM 3. If there exists a decreasing function v on [0, o) and >0
such that

|, (log p) = v(pydp <oz, (3)
and if @ and  satisfy (1), then the wavelet Fourier series of f€ L([0, 1]?)
converges to f almost everywhere.

3. AUXILIARY RESULTS

LEMmA 1.

Sallix)=2"[ 0T ¥ ¥ g @k ) g (x k) tr)d,

ecE reQ¢ keZ™

where QF :=[0, 27)™.
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Proof. First we prove that

Jj—1

LT Tex)+Y Y Y (ATHOTyx)= Y (LTH THx).

ecd& i=0 re[0,20)m ref[0,2/)ym (4)

If fe L,([0,17™), then (4) is evident because the left and right expressions
in (4) are the expansions of the projection of f onto V7 over two different
orthonormal bases. Taking into account that, due to (1), the functions 7,
are bounded and noting that we can approximate an arbitrary f'e L([ 0, 1]™)
by functions from L,([0, 1]™) in L we prove (4) for f. So, we can write

=Y X (LT Tix)

ecE reQ¢

=27 Y Y [ A Y @k +nd Y g s+

ecE re@e"T" kezm™ leZ™

=2y Y ¥ j (2t +1) g2 (x+ 1) +7) dt.

ecE reQ¢ leZ™

It remains only to change variables in the integral and change the order
of summation and integration.

LEmMMmA 2. Let v be an even monotone decreasing function which is
summable on [0, + oo0). Then, there holds

y ]"[ (u+ k) v(v,+ k) < ﬁ < _U’>, u,veR™  (5)

keZ™ I=1

where A is a constant depending only on v and m.

Proof. First we note that since the left and right expressions in (5) are
invariant under the translation (u,v)— (u+1/Lv+/) for /leZ™, we can
assume that |u,| <1, I=1, .., m. Let ¢, be a subset of E such that |v,| >4
for lee, and |v,| <4 for e E\e,. For each e = E we denote by d(e) the set
of k € Z™ such that |k,| > |v,|/2 for e e and |k;| <|v,|/2 for [ € E\e. The left
hand expression in (5) may be represented as the sum

Yoo T vlu+k) (v + k).
ecE kedle) I=1

It is enough to fix e and estimate the inner sum. Let ked(e). If [ee, Nne,
then |u,+k;| = 1k;|/2 = |v,|/4 and hence v(u;+ k;) < v(v,/4) < v((u;—v,)/5);
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if lee,\e, then |v,+k;| = |v,| — |k;| = |v,]/2 and hence v(u;+ k;) <v(v,/2) <
v((u;—v;)/5). Applying these inequalities for /ee, and replacing v(u;+ k;)
or v(v;+k,;) by v(0) for /€ E\e,, we have

3

v(u;+k;) v(v, + k)

=1

<1 v<”’;”’> T v0) [T v(w,+k) [ vu+ky).

lee, leE\e, lee le E\e

To prove (5) it remains only to take into account that v(u; — v;) = Cv(0) for
le E\e, and that the sum Y, ., v(z — k) is bounded uniformly over reR.

Lemma 3 [3]. Let v be an even monotone decreasing function which is
summable on [0, + o0) and satisfies (2). Then, there holds

|u—v|

Y ]_[ (u;+ k) v( Ul+k)<BV<

kezZ™ =1

>, u,veR”,

where B is a constant depending only on v and m.

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Let x be a strong Lebesgue point of f'e L[ 0, 1]™.
Integer translates of the mother-function ¢ constitute an orthonormal
basis in the space V,; this implies 3,., ¢*(t+k)=1 (teR) (see [1,
p. 132]). Moreover, due to (1), ¢ is bounded and continuous at O.
It follows that ¢(0)=1 (see [1, p. 144]). On the basis of these equal-
ities, we have [§e*™*Y, , o(t+1)di=¢(k)=0Jy and hence T gy(x)=
IT721 2 ez ¢(x;+ ;) = 1. Thus, the sums S, leave unchanged all functions
f =const and therefore without loss of generality we can assume that f(x) =0.
Put A (u, v) =>,cznm g+ 1) v(vg+[). By Lemma 1 and (1)

Sl x)| < 270D j DA (2 (x4 1), 270) di

=2" ) Lm+k|f(x+2"t)lAf(zfx+z,2fx)dz. (6)

kez™

By the definition of a strong Lebesgue point, for any given ¢ >0, we can
choose 0 >0, such that
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1
hy--h

h h,
jl f |f(x+t)|dt<s, for |k <d,i=1,..,m
h

m -mM -

jhl " s nla=c
sup X =C< 0.
hy, #0 hl h hy —h,

Take a positive integer j, for which 2'~/#2 <4 and [5234,, V(7/5) dr <e.
For ieZ” put K(i)={keZ" [2" '] <|k,| <25 s=1,..,m}, where [a]
denotes the greatest integer in a. Due to (6) and Lemma 2, we have for
all j = j,

Salfxl< ¥ [1W0227215) X [ It 270l dr
ieZ” s=1 k e K(i) +

m

<8 Z n v([zis—Z]/5)2i5+1

ieZ” NnjT" s=1

+C Z n ([25—2]/5) 256+ 1,
ieZM\jT" s=1
Applying the inequality v([2%72]/5) 25+ <16 [2523 v(1/5) dt for iy >3, we
have

|Sja( £, )] < (v(0) + L) &+ C(v(0) + L)~

X fi”z v(t/5) de < (v(0)+ L+ C)(w(0)+ L)™ !

where L= (¢ v(7) dr. From this, we see that for each sequence {Q;}
there holds hmjaoo 0, (f, x)=0, and the convergence is uniform over all

sequences {Q;} 72 .

Proof of Theorem 2. Let x be a Lebesgue point of fe L[0, 1]™. As in
Theorem 1 we can assume that f(x) = 0. By the definition of a Lebesgue point,
for each given ¢ >0, we can find J > 0 such that (1/4™) thm | f(x)| dt <e for
all he (0, 6). Take j, for which 272 <§ and [5*.n T~ 'v(7/5) dr <e. Due
to Lemma 3 and (6), we have for all j > j,

1Sl ) << v(0) [ [f(x+270) di

m

+ f W(2i1Y/5) L |f(x+2771)] d

i+1Tm\2iTm

<ev(0)+e Y 2275+ fIly Y, 22715,

0<i<j/2 i>j/2
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Applying the inequality 2"v(2°~1/5) < 2" y%i:; "~ Yy(t/5) dt, we have

[Sial fs %) << [ W0)+ [ () dr} s/ [, TSy e

(o)

<[v<0)+f

0

= 1y(z) de + |f|1} :

From this, we see that for each sequence {;} 2, there holds hmj_, o Sij

(f, x) =0, and the convergence is uniform over all sequences {Q; } °

Proof of Remark. We restrict our focus to considering the case m = 2.
For arbitrary m, a similar construction proves the remark.

Define ¢ by
1, it Jul<1/3,
d(u)={ |sin 2| i 13<|ul <2/3,
0, it Jul =2/3.

One can recognize in ¢ the father-wavelet of Meyer’s non-smooth multi-
resolution analysis [ 6]. We construct a tensor product of two such analyses
and consider the corresponding wavelet Fourier series. It is not difficult to
compute ¢ explicitly

sin 27u/3 N 6 cos 4ru/3 + 8u sin 27u/3

) = 29— 161

We can also compute the father-wavelet i due to equation (1) = e"”‘( (u+1)
+@(u—1)) ¢(u/2) (see [1, p. 138]) and verify that y(u) = O(u~2). We see
from this that ¢ and tﬁ satisfy (1) and do not satisfy the condition of Theorem 2.
We put S;(f, x) =S;q_(f, x), where Qg = {(QQ = Veefa} and prove
that there exists a functlon /€ L(T?) such that the sequence {S,(/f)} diverges
at some Lebesgue point.

Take f,(x) =e?™" > neZ? By Lemma 1

U =22 [ S0 Y Y gF@Uk) ) g5 k) ) di

ref[0,2/)? kez?

Z j eZninltl(p(zjtl _ kl) (p(ij, — k,) dll

— oo

1,
ng

(27m) ¥ e (20— k).

kjeZ
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Applying the Poisson summation formula and taking into account that
supp @ Nsupp @(- +k)=0 for ke Z, |k| =2, we have

2

S 3= TLEG(2 )+ 20 5p(1 =2 )

+e2m(n,+2f)x,¢(1 +277n))) $(277ny).

Hence, we can express S;(f, x) for arbitrary f'e L(T?) via trigonometric
Fourier coefficients

2 2
Si(f,x)= YooY vi(20x) yl(27xy) Y, ap(27n) f,e2 R, (7)
=0 k=0 nelZl
where yo(u) =1, y,(u) =2 cos 2nu, y,(u)=2isin 2nu, ay(u, v) =o,(u) o (v),
oo(u) = (), oy(u) = () P(1 +u)+ ¢(1—u)], oy(u) =P(u)[ (1 +u)—
@(1 —u)]. The sums over » in (7) are linear summation methods of trigo-
nometric Fourier series. We apply to them the following result of E. S.
Belinskii [4]: a sequence of linear means og(f, xX) =3, czn (R~ 'n) f, ¥
converges as R — oo at each Lebesgue point of fe L([0, 1]™) if and only
if

j =1 sup |&(1)] dr < . (8)
0 |t =7

The computations give

81(sin 27u/3 + sin 47u/3)(sin 27zv/3 + sin 47v/3)
4n%uv(9 — 4u”)(9 — 4v?) ’

Aoo(U, V) =
27(sin 27tu/3 + sin 4nu/3)(cos 2nv/3 + cos 4mv/3)
2m%u(9 — 4u?)(9 — 40?) ’

9(cos 2nu/3 4 cos 4nu/3)(cos 2rnv/3 + cos 4nv/3)
(9 — 4u)(9 — 4v?) '

&yo(v, u) = Aoy (u, v) =

dyy(u, v) =

We see that (8) is fulfilled for o, and not fulfilled for 2ot;; 4+ o9 + gy .
Consequently, we can construct a function fe L([0, 1]%) for which the
point (0,0) belongs to its Lebesgue set and S;(f,0,0) divergences as
J— oo.

Proof of Theorem 3. Let fin L([0, 1]%) and put

!

2L ok 2-'n
Ifxdn =g [ dn [ fe G = f) dos,
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where h>0, r=1,2, C;=(%), C,= (). It is proved in [7] that

lim sup sup (14+0)~'=*J,(f,x, hr)=0, (9)

h=0 y—1,2 IeZ,

sup sup sup (1+0)~'"*J,(f,x,hr)=C< o0 (10)

h>0 r=1,2 leZ

for almost all x € R2 For any x, satisfying (9), (10), and &> 0, we can find
0> 0 such that

sup sup (1+0)~'=*J,(fix,hr)<e (11)

r=12 leZ,

for all 7€ (0, 0). As in Theorem 1 we can assume that f(x)=0. We take a
positive integer j, for which 2'7/72 <4, [5.,2 v(7/5) log' ** 167 dr <e.
Due to (6) and Lemma 2, we have for all j > j,

ISio(fi0)l<< X X sz kIf(X+2*"t)Iv(ltll/S)v(Itzl/S)dt
ieZ? keK(i) +
2i1+1

< Y W22 [

. 2 i1+l
ieZ

2ip+1 )
xj |f(x +2771)| dt,.
_2i2+l

We use here the notations of Theorem 1. Due to symmetry, if suffices to
estimate

) i 2ip+1 2ix+1

> Y W2 Y W2 RS [ dn [ (2] d
=0 i,—0 _oip+1 _pip+1
= Y% W([20721/5) wW([22721/5) 28R, L (fx, 20T ),
i1=0 =0

We split the sum over i; into two parts: i; < j/2 and i, > j/2. Since
20=7+1.< 6, for i, < j/2, due to (11), the first part does not exceed

> 2"1+5v([2f12]/5)[<1+i1>1+“v<0)

0<i|<j/2

iy 5iy-2

+Y (i =i+ |

=2 2i2=3

v(t/5) dr} . (12)
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Applying the Abel transformation to the sum over i,, we have for i, > 2,
i 9iy—2

S (+i—i) [ w(zs)de

-3
=2 22

q V(T/S)dr{l—i-i (I +iy—ip)' = (i, —iy)' %)
0

=2

<2j°° W(e/5) daliy — 1)+,
0
Thus the sum (12) can be estimated from above by
< +f v(z/5) log +* 167 dT>< +f W(t/5) d >

Similarly, using (10) instead of (11), we estimate the second part by

29c<‘[OO V(T/5)10g1+°‘ 167 a"[><v(0)-|-fDo V(T/S)df>

23+ 0
<2°Ce <V(O) + jw v(t/5) dr>.
0

From this, we see that for each sequence {;}7, the relation
lim;_, , S o, (f; x)=0 holds true and the convergence is uniform over all

sequences {QJ—} 2y

5. NON-PERIODIC CASE

Following [3] we define the multiresolution expansion of f e L,(R™),
0<p < o0, by the sequence {P;}, .5

Piflx)= ) 2™ <J f(t) g% (2t + k) dt> E(2ix +k);
kezZm
and the wavelet and scaling expansions of f by the series

Yy ¥ zm(] (1) g° 2fz+k)dz>ge(2fx+k) (13)

JEZ keZ™ ecé&
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and

2 (Lm J(1) gt +k) dt> gE(x+k)

keZ™

+Y % Z2'"f‘<mef(r)ge(zfz+k)dz>ge(2fx+k), (14)

JEZ kel ee&

respectively. The following theorems improve some results of [3].

THEOREM 4. If there exists a decreasing function v which is summable on
[0, 00) and such that |p(t)| <v(|t]), then the multiresolution expansion of
each fe L, (R™), p>1, converges almost everywhere. If (1) holds, then the
scaling and wavelet expansions of each f € L (R™), p > 1, also converge almost
everywhere.

This theorem may be proved similarly to Theorem 1.

THEOREM 5. If there exists a decreasing function v on [0, oo ] such that
(3) holds and |@(t)| <v(|t]), then the multiresolution expansion of each
fe L(R?) converges almost everywhere. If, in addition, there exists a decreasing
function u which is summable on [0, o0) and such that |y(t)| <u(|t]), then
the scaling and wavelet expansions of any fe L(R?) also converge almost
everywhere.

This theorem may be proved similarly to Theorem 3.
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