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Fourier series with respect to wavelet orthonormal bases in L2([0, 1]m) for a wide
class of multiresolution analyses are studied. Convergence at Lebesgue and strong
Lebesgue points is investigated and sufficient conditions for a.e. convergence are found.
In addition, similar conditions for a.e. convergence of wavelet expansions of non-periodic
functions are obtained. The latter essentially improve known results. � 1998 Academic Press

1. INTRODUCTION AND DEFINITIONS

A periodized wavelet basis of multiresolution analysis with sufficiently
fast decaying mother- and father-wavelets is an orthonormal basis in L2([0, 1]).
Fourier series with respect to this basis (we call them wavelet Fourier series)
have a remarkable property: uniform convergence of wavelet Fourier series
of f to f for each continuous f (see, e.g., [1, Chap. 9]). It is of interest also
to investigate the convergence of wavelet Fourier series of summable periodic
functions at an individual point and almost everywhere. These problems
were studied earlier for some special cases. The convergence of Fourier�Haar
series at each Lebesgue point is well known (see, e.g., [2]). It is proved in [3]
that 2 jth partial sums of Fourier series with respect to periodic spline wavelets
converge art each Lebesgue point. We consider a similar problem for a
wide class of wavelets in the multi-dimensional case. We will investigate the
behavior of wavelet Fourier series of f # L([0, 1]m) at points of two types:
Lebesgue and so-called strong Lebesgue points (the latter were introduced
by E. S. Belinskii [4]). One says that x is a Lebesgue point of f if

lim
h � +0

1
hm |

[&h, h]m
| f (x+t)& f (x)| dt=0.
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One says that x is a strong Lebesgue point of f if

lim
h1 , ..., hm � 0

1
h1 } } } hm

|
h1

&h1

dt1 } } } |
hm

&hm

dtm | f (x+t)& f (x)|=0,

sup
h1 , ..., hm{0

1
h1 } } } hm

|
h1

&h1

dt1 } } } |
hm

&hm

dtm | f (x+t)& f (x)|<�.

It is well known that almost all points are Lebesgue points of f # L([0, 1]m).
It follows from results of S. Saks [6] that almost all points are strong
Lebesgue points of f # L log L([0, 1]m), a fortiori of f # Lp , p>1. We consider
an m-dimensional multiresolution analysis which is the tensor product of
m given one-dimensional multiresolution analyses with father-wavelet .
and mother-wavelets �. In order to construct an orthonormal system in
L2([0, 1]m), generated by this analysis, it is necessary to impose some
restrictions on . and �. Without any other assumptions we prove that the
wavelet Fourier series of f # L([0, 1]m) converges at each strong Lebesgue
point. Moreover, a close to best possible sufficient condition on . and �
for convergence at each Lebesgue point is found. This condition implies
almost everywhere convergence for all f # L([0, 1]m. For m=2 we have
a sharper condition under which almost everywhere convergence holds for
all f # L([0, 1]2).

S. Kelly, M. Kon, and L. Raphael [3] investigated a similar problem
for the non-periodic case. They showed that wavelet expansions converge
almost everywhere for all f # Lp(Rm), 1� p��, whenever mother- and
father-wavelets of m-dimensional multiresolution analysis are bounded by
a radial decreasing L1 function. We improve this result for the cases when
p>1 or m=2, 1� p��. Our technique for periodic and non-periodic
cases is similar to that of [3]: study bounds on summation kernels. We
use two types of the above estimations for kernels: via a radial majorant
of m-dimensional mother- and father-wavelets (this estimation was
proved and used in [3]) and via a majorant of mother- and father-wavelets
of one-dimensional multiresolution analysis generating m-dimensional
wavelets.

Let us use the notations Tm=[&1
2 , 1

2]m; E=[1, ..., m]; E=[e/E, e{E];
ge(x) = ge(., �, x) = >l # e .(x l) >l # E"e �(x l), x=(x1 , ..., xm) # Rm, e/E;
f� (x)=�Rm f(u) e&2?ix } u du, the Fourier transform of f # L(Rm); �k # Zm f� ke2?ik } x,
the trigonometric Fourier series of f # L(Tm).

Let . and � be respectively the father- and mother-wavelets of one-dimen-
sional multiresolution analysis

} } } V&1 /V0 /V1 / } } }

192 M. A. SKOPINA



File: DISTL2 319103 . By:AK . Date:02:07:98 . Time:13:17 LOP8M. V8.B. Page 01:01
Codes: 2866 Signs: 1498 . Length: 45 pic 0 pts, 190 mm

We define spaces Vj by

V0=V0 � } } } �V0=span {F(x), x # Rm, F(x)= `
m

l=1

f l (xl), fl # V0= ,

F # Vj � F(2& j } ) # V0 , j # Z.

It is not difficult to show (see, e.g., [1, Chap. 10]) that the ladder of
spaces Vj , j # Z, forms a multiresolution analysis in L2(Rm), the functions
8j, n(x)=2mj�2gE (2 jx&n), n # Zm, x # Rm, constitute an orthonormal basis
in Vj , and the functions 9 e

j, n(x)=2mj�2ge(2 jx&n), n # Zm, x # Rm, e # E

constitute an orthonormal basis in the complement spaces Wj=Vj � Vj&1 .
Let us assume that

|.(t)|, |�(t)|�&( |t| ), (1)

where & is a monotone decreasing function which is summable on [0, �).
Define 1-periodic in each variable functions T E

jn(x)=� l # Z m 8jn(x&l ),
T e

jn(x)=� l # Zm 9 e
jn(x&l ). As for the one-dimensional case (see, e.g.,

[1, Chap. 9]), it is not difficult to verify that the spaces

V per
j =span[T E

jn , n # Zm & [0, 2 j)m], j=0, 1, ...,

form a ladder of multiresolution spaces in L2([0, 1]m) such that ��
j=0 V per

j

=L2([0, 1]m), and the spaces

W per
j =span[T E

jn , n # Zm & [0, 2 j)m, e # E], j=0, 1, ...,

are orthogonal complements of V per
j in V per

j+1 . Thus, the functions T E
00 , T e

jn ,
e # E, j=1, 2, ..., n # Zm & [0, 2 j)m constitute an orthogonal wavelet basis
in L2([0, 1])m). Let ( f, T e

jn)=�[0, 1]m f (x) T e
jn(x) dx be Fourier coefficients

with respect to this basis. For each positive integer j and the set 0=[0e: 0e/
[0, 2 j)m]e # E , we define partial sums

S j0( f )=( f, T E
00) T E

00+ :
e # E

:
j&1

i=0

:
n # Z m & [0, 2 j )m

( f, T e
in) T e

in

+ :
e # E

:
n # Zm & 0e

( f, T e
jn) T e

jn .

We will say that a wavelet Fourier series converges if Sj0j ( f ) converges,
as j � �, uniformly over all sequences [0j] j .
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2. MAIN RESULTS

Theorem 1. If . and � are continuous functions satisfying (1), then the
wavelet Fourier series of f # L([0, 1]m) converges to f at each strong
Lebesgue point of f. In particular, for f # L log L([0, 1])m) convergence
holds almost everywhere.

Theorem 2. If there exists a function & which is decreasing on [0, �]
and satisfies

|
�

0
\m&1&(\) d\<�, (2)

and if . and � are continuous functions satisfying (1), then the wavelet
Fourier series of f # L([0, 1]m) converges to f at each Lebesgue point of f.
In particular, convergence holds almost everywhere.

The condition on the functions ., � in this theorem is close to sharp due
to the following:

Remark. Relations (1), (2) in Theorem 2 cannot be replaced by |.(t)|,
|�(t)|<<t&m.

Theorem 3. If there exists a decreasing function & on [0, �) and :>0
such that

|
�

1
(log \)1+: &(\) d\<�, (3)

and if . and � satisfy (1), then the wavelet Fourier series of f # L([0, 1]2)
converges to f almost everywhere.

3. AUXILIARY RESULTS

Lemma 1.

Sj0( f, x)=2mj |
Rm

f (t) :
e/E

:
r # 0 e

:
k # Z m

ge(2 j (t+k)+r) ge(2 j (x+k)+r) dt,

where 0E :=[0, 2 j)m.
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Proof. First we prove that

( f, T E
00) T E

00(x)+ :
e # E

:
j&1

i=0

:
r # [0, 2 i)m

( f, T e
ir) T e

ir(x)= :
r # [0, 2 j )m

( f, T E
jr) T E

jr(x).

(4)

If f # L2([0, 1]m), then (4) is evident because the left and right expressions
in (4) are the expansions of the projection of f onto V per

j over two different
orthonormal bases. Taking into account that, due to (1), the functions T e

ir

are bounded and noting that we can approximate an arbitrary f # L([0, 1]m)
by functions from L2([0, 1]m) in L we prove (4) for f. So, we can write

Sj0( f, x)= :
e/E

:
r # 0e

( f, T e
jr) T e

jr(x)

=2mj :
e/E

:
r # 0e

|
Tm

f(t) :
k # Zm

ge(2 j (t+k)+r) dt :
l # Zm

ge(2 j (x+l)+r)

=2mj :
e/E

:
r # 0e

:
l # Zm

|
Rm

f (t) ge(2 jt+r) ge(2 j(x+l)+r) dt.

It remains only to change variables in the integral and change the order
of summation and integration.

Lemma 2. Let & be an even monotone decreasing function which is
summable on [0, +�). Then, there holds

:
k # Zm

`
m

l=1

&(u l+kl) &(v l+kl)�A `
m

l=1

& \ul&vl

5 + , u, v # Rm, (5)

where A is a constant depending only on & and m.

Proof. First we note that since the left and right expressions in (5) are
invariant under the translation (u, v) � (u+l, v+l ) for l # Zm, we can
assume that |ul |�1, l=1, ..., m. Let ev be a subset of E such that |vl |>4
for l # ev and |vl |�4 for l # E"ev . For each e/E we denote by d(e) the set
of k # Zm such that |kl |>|v l |�2 for l # e and |k l |�|vl |�2 for l # E"e. The left
hand expression in (5) may be represented as the sum

:
e/E

:
k # d(e)

`
m

l=1

&(ul+kl) &(vl+kl).

It is enough to fix e and estimate the inner sum. Let k # d(e). If l # ev & e,
then |ul+kl |�|kl |�2�|vl |�4 and hence &(ul+kl)�&(vl �4)�&((u l&vl)�5);
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if l # ev"e, then |vl+kl |�|v l |&|k l |�|vl |�2 and hence &(u l+k l)�&(vl �2)�
&((ul&vl)�5). Applying these inequalities for l # ev and replacing &(ul+k l)
or &(vl+k l) by &(0) for l # E"ev , we have

`
m

l=1

&(ul+kl) &(vl+k l)

� `
l # ev

& \u l&v l

5 + `
l # E"ev

&(0) `
l # e

&(vl+kl) `
l # E"e

&(ul+kl).

To prove (5) it remains only to take into account that &(ul&vl)�C&(0) for
l # E"ev and that the sum �k # Z &(t&k) is bounded uniformly over t # R.

Lemma 3 [3]. Let & be an even monotone decreasing function which is
summable on [0, +�) and satisfies (2). Then, there holds

:
k # Zm

`
m

l=1

&(u l+k l) &(v l+kl)�B& \ |u&v|
5 + , u, v # Rm,

where B is a constant depending only on & and m.

4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Let x be a strong Lebesgue point of f # L[0, 1]m.
Integer translates of the mother-function . constitute an orthonormal
basis in the space V0 ; this implies �k # Z .̂2(t+k)=1 (t # R) (see [1,
p. 132]). Moreover, due to (1), .̂ is bounded and continuous at 0.
It follows that .̂(0)=1 (see [1, p. 144]). On the basis of these equal-
ities, we have �1

0 e2?ikt � l # Z .(t+l ) dt=.̂(k)=$0k and hence T E
00(x)=

>m
i=1 � li # Z .(x i+l i)=1. Thus, the sums Sj0 leave unchanged all functions

f #const and therefore without loss of generality we can assume that f (x)=0.
Put N(u, v)=�l # Zm >m

s=1 &(us+ls) &(vs+ls). By Lemma 1 and (1)

|Sj0( f, x)|�2m( j+1) |
Rm

| f (x+t)| N(2 j (x+t), 2 jx) dt

=2m :
k # Zm

|
T m+k

| f (x+2& jt)| N(2 jx+t, 2 jx) dt. (6)

By the definition of a strong Lebesgue point, for any given =>0, we can
choose $>0, such that
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1
h1 } } } hm

|
h1

&h1

} } } |
hm

&hm

| f (x+t)| dt<=, for |hi |<$, i=1, ..., m,

sup
h1, ..., hm{0

1
h1 } } } hm

|
h1

&h1

} } } |
hm

&hm

| f (x+t)| dt=C<�.

Take a positive integer j0 for which 21& j0�2<$ and ��
2&3+j 0 �2 &({�5) d{<=.

For i # Zm
+ put K(i)=[k # Zm; [2is&1]�|ks |<2 is, s=1, ..., m], where [a]

denotes the greatest integer in a. Due to (6) and Lemma 2, we have for
all j� j0

|Sj0( f, x)|<< :
i # Z m

+

`
m

s=1

&([2 is&2]�5) :
k # K(i)

|
T m+k

| f (x+2& jt)| dt

�= :
i # Zm

+ & jT m

`
m

s=1

&([2is&2]�5) 2is+1

+C :
i # Z m

+" jT m

`
m

s=1

&([2is&2]�5) 2 is+1.

Applying the inequality &([2is&2]�5) 2is+1�16 �2 i s&2

2 i s&3 &({�5) d{ for is�3, we
have

|Sj0( f, x)|<<(&(0)+L)m =+C(&(0)+L)m&1

_|
�

2&3+j�2
&({�5) d{�(&(0)+L+C)(&(0)+L)m&1 =,

where L=��
0 &({) d{. From this, we see that for each sequence [0j]�

j=1

there holds limj � � S j0j
( f, x)=0, and the convergence is uniform over all

sequences [0j]�
j=1 .

Proof of Theorem 2. Let x be a Lebesgue point of f # L[0, 1]m. As in
Theorem 1 we can assume that f (x)=0. By the definition of a Lebesgue point,
for each given =>0, we can find $>0 such that (1�hm) �hTm | f (x)| dt<= for
all h # (0, $). Take j0 for which 2& j0�2<$ and ��

2 &2+j�2 {m&1&({�5) d{�=. Due
to Lemma 3 and (6), we have for all j� j0

|Sj0( f, x)|<<&(0) |
Tm

| f (x+2& jt)| dt

+ :
�

i=0

&(2 i&1�5) |
2 i+1T m"2 i T m

| f (x+2& jt)| dt

<<=&(0)+= :
0�i� j�2

2im&(2 i&1�5)+& f &1 :
i> j�2

2 im&(2i&1�5).
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Applying the inequality 2im&(2 i&1�5)�22m �2 i&1

2 i&2 {m&1&({�5) d{, we have

|Sj0( f, x)|<<_&(0)+|
�

0
{m&1&({) d{& =+& f &1 |

�

2&2+j�2
{m&1&({�5) d{

�_&(0)+|
�

0
{m&1&({) d{+& f &1& =.

From this, we see that for each sequence [0j]�
j=1 there holds limj � � S j0j

( f, x)=0, and the convergence is uniform over all sequences [0j]�
j=1 .

Proof of Remark. We restrict our focus to considering the case m=2.
For arbitrary m, a similar construction proves the remark.

Define . by

1, if |u|�1�3,

.̂(u)={}sin
3?u

2 } , if 1�3�|u|�2�3,

0, if |u|�2�3.

One can recognize in . the father-wavelet of Meyer's non-smooth multi-
resolution analysis [6]. We construct a tensor product of two such analyses
and consider the corresponding wavelet Fourier series. It is not difficult to
compute . explicitly

.(u)=
sin 2?u�3

2?u
+

6 cos 4?u�3+8u sin 2?u�3
?(9&16u2)

.

We can also compute the father-wavelet � due to equation �� (u)=ei?u(.̂(u+1)
+.̂(u&1)) .̂(u�2) (see [1, p. 138]) and verify that �(u)=O(u&2). We see
from this that . and � satisfy (1) and do not satisfy the condition of Theorem 2.
We put Sj ( f, x)=Sj0<

( f, x), where 0<=[0e: 0e=< \e # E], and prove
that there exists a function f # L(T2) such that the sequence [Sj ( f )] diverges
at some Lebesgue point.

Take fn(x)=e2?in } x, n # Z2. By Lemma 1

Sj ( fn , x)=22j |
R2

fn(t) :
r # [0, 2 j )2

:
k # Z 2

gE (2 j (t+k)+r) gE (2 j (x+k)+r) dt

= `
2

l=1

:
kl # Z

2 j |
�

&�
e2?inl tl .(2 jt l&kl) .(2 jxl&kl) dtl

= `
2

l=1

.̂(2& jnl) :
kl # Z

e2?inl 2
& j kl.(2 jxl&k l).
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Applying the Poisson summation formula and taking into account that
supp . & supp .( } +k)=0 for k # Z, |k|�2, we have

Sj ( fn , x)= `
2

l=1

(e2?inlxl .̂(2& jnl)+e2?i(nl&2 j ) xl .̂(1&2& j nl)

+e2?i(nl+2 j ) xl .̂(1+2& j nl)) .̂(2& j nl).

Hence, we can express S j ( f, x) for arbitrary f # L(T2) via trigonometric
Fourier coefficients

Sj ( f, x)= :
2

l=0

:
2

k=0

# l (2
jxl) #k(2 jx2) :

n # Z

:lk(2& jn) f� n e2?in } x, (7)

where #0(u)=1, #1(u)=2 cos 2?u, #2(u)=2i sin 2?u, :lk(u, v)=:l (u) :k(v),
:0(u)=.̂2(u), :1(u)=.̂(u)[.̂(1+u)+.̂(1&u)], :2(u)=.̂(u)[.̂(1+u)&
.̂(1&u)]. The sums over n in (7) are linear summation methods of trigo-
nometric Fourier series. We apply to them the following result of E. S.
Belinskii [4]: a sequence of linear means _R( f, x)=�n # Zm :(R&1n) f� ne2?inx

converges as R � � at each Lebesgue point of f # L([0, 1]m) if and only
if

|
�

0
{m&1 sup

|t|�{
|:̂(t)| d{<�. (8)

The computations give

:̂00(u, v)=
81(sin 2?u�3+sin 4?u�3)(sin 2?v�3+sin 4?v�3)

4?2uv(9&4u2)(9&4v2)
,

:̂10(v, u)=:̂01(u, v)=
27(sin 2?u�3+sin 4?u�3)(cos 2?v�3+cos 4?v�3)

2?2u(9&4u2)(9&4v2)
,

:̂11(u, v)=
9(cos 2?u�3+cos 4?u�3)(cos 2?v�3+cos 4?v�3)

?2(9&4u2)(9&4v2)
.

We see that (8) is fulfilled for :00 , and not fulfilled for 2:11+:10+:01 .
Consequently, we can construct a function f # L([0, 1]2) for which the
point (0, 0) belongs to its Lebesgue set and S j ( f, 0, 0) divergences as
j � �.

Proof of Theorem 3. Let f in L([0, 1]2) and put

Jl ( f, x, h, r)=
2l

h2 |
h

&h
dt1 |

2 & lh

&2 & lh
| f (x+Cr t)& f (x)| dt2 ,
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where h>0, r=1, 2, C1=( 01
10), C2=( 10

01). It is proved in [7] that

lim
h � 0

sup
r=1, 2

sup
l # Z+

(1+l )&1&: Jl ( f, x, h, r)=0, (9)

sup
h>0

sup
r=1, 2

sup
l # Z+

(1+l )&1&: Jl ( f, x, h, r)=C<� (10)

for almost all x # R2. For any x, satisfying (9), (10), and =>0, we can find
$>0 such that

sup
r=1, 2

sup
l # Z+

(1+l)&1&: Jl ( f, x, h, r)<= (11)

for all h # (0, $). As in Theorem 1 we can assume that f (x)=0. We take a
positive integer j0 for which 21& j0 �2<$, ��

2&3+ j 0 �2 &({�5) log1+: 16{ d{�=.
Due to (6) and Lemma 2, we have for all j� j0

|S j0( f, x)|<< :
i # Z 2

+

:
k # K(i)

|
T 2+k

| f (x+2& jt)| &( |t1 |�5) &( |t2 |�5) dt

� :
i # Z 2

+

&([2i1&2]�5) &([2i2&2]�5) |
2 i1+1

&2 i 1+1
dt1

_|
2 i 2+1

&2 i 2+1
| f (x+2& jt)| dt2 .

We use here the notations of Theorem 1. Due to symmetry, if suffices to
estimate

:
�

i1=0

:
i1

i2=0

&([2i1&2]�5) &([2i2&2]�5) |
2 i1+1

&2 i 1+1
dt1 |

2 i2+1

&2 i 2+1
| f (x+2& jt)| dt2

= :
�

i1=0

:
i1

i2=0

&([2i1&2]�5) &([2i2&2]�5) 2i1+i2+2Ji1&i2
( f, x, 2i1& j+1, 1).

We split the sum over i1 into two parts: i1� j�2 and i1> j�2. Since
2i1& j+1�$, for i1� j�2, due to (11), the first part does not exceed

= :
0�i1� j�2

2 i1+5 &([2i1&2]�5) _(1+i1)1+: &(0)

+ :
i1

i2=2

(1+i1&i2)1+: |
2 i 2&2

2 i 2&3
&({�5) d{& . (12)
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Applying the Abel transformation to the sum over i2 , we have for i2�2,

:
i1

i2=2

(1+i1&i2)1+: |
2 i 2&2

2 i 2&3
&({�5) d{

�|
�

0
&({�5) d{ _1+ :

i1

i2=2

((1+i1&i2)1+:&(i1&i2)1+:)&
�2 |

�

0
&({�5) d{(i1&1):+1.

Thus the sum (12) can be estimated from above by

29= \&(0)+|
�

0
&({�5) log1+: 16{ d{+\&(0)+|

�

0
&({�5) d{+ .

Similarly, using (10) instead of (11), we estimate the second part by

29C \|
�

2&3+j�2
&({�5) log1+: 16{ d{+\&(0)+|

�

0
&({�5) d{+

�29C= \&(0)+|
�

0
&({�5) d{+ .

From this, we see that for each sequence [0j]�
j=1 the relation

limj � � S j0j
( f, x)=0 holds true and the convergence is uniform over all

sequences [0j]�
j=1 .

5. NON-PERIODIC CASE

Following [3] we define the multiresolution expansion of f # Lp(R
m),

0�p��, by the sequence [Pj] j # Z

Pj f (x)= :
k # Z m

2mj \|Rm
f (t) gE (2 jt+k) dt+ gE (2 jx+k);

and the wavelet and scaling expansions of f by the series

:
j # Z

:
k # Z m

:
e # E

2mj \|Rm
f (t) ge(2 jt+k) dt+ ge(2 jx+k) (13)
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and

:
k # Z m \|R m

f (t) gE (t+k) dt+ gE (x+k)

+ :
j # Z

:
k # Z m

+

:
e # E

2mj \|Rm
f (t) ge(2 jt+k) dt+ ge(2 jx+k), (14)

respectively. The following theorems improve some results of [3].

Theorem 4. If there exists a decreasing function & which is summable on
[0, �) and such that |.(t)|�&( |t| ), then the multiresolution expansion of
each f # Lp(Rm), p>1, converges almost everywhere. If (1) holds, then the
scaling and wavelet expansions of each f # Lp(R

m), p>1, also converge almost
everywhere.

This theorem may be proved similarly to Theorem 1.

Theorem 5. If there exists a decreasing function & on [0, �] such that
(3) holds and |.(t)|�&( |t| ), then the multiresolution expansion of each
f # L(R2) converges almost everywhere. If, in addition, there exists a decreasing
function + which is summable on [0, �) and such that |�(t)|�+( |t| ), then
the scaling and wavelet expansions of any f # L(R2) also converge almost
everywhere.

This theorem may be proved similarly to Theorem 3.
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